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A comparison of multi-frame blind deconvolution and speckle imaging 
energy spectrum signal-to-noise ratios 

 

Charles L. Matson 

Directed Energy Directorate, Air Force Research Laboratory, Kirtland AFB, NM  USA 87117 

ABSTRACT 

An analytical signal-to-noise ratio (SNR) expression is derived for unbiased estimates of energy spectra obtained using 

multi-frame blind deconvolution (MFBD) algorithms.  Because an analytical variance expression cannot, in general, be 

derived, Cramér-Rao lower bounds are used in place of the variances.  As a result, the SNR expression provides upper 

bounds to the achievable SNRs that are independent of the MFBD algorithm implementation.  The SNR expression is 

evaluated for the scenario of ground-based imaging of astronomical objects.  It is shown that MFBD energy-spectrum 

SNRs are usually greater, and often much greater, than their corresponding speckle imaging (SI) energy-spectrum SNRs 

at all spatial frequencies.  One reason for this SNR disparity is that SI energy spectrum SNRs are proportional to the 

object energy spectrum and the ensemble-averaged atmosphere energy spectrum, while MFBD SNRs are approximately 

proportional to the square root of these quantities.  Another reason for this SNR disparity is that single-frame SI energy-

spectrum SNRs are limited above by one, while the MFBD energy-spectrum SNRs are not. 

Keywords: blind deconvolution, speckle imaging, signal-to-noise ratios, Cramér-Rao lower bounds 

 

1. INTRODUCTION 
The spatial resolutions of visible-wavelength astronomical images obtained using meter-class or larger ground-based 

telescopes are greatly affected by atmospheric turbulence.
1
  Because of this fact, post-processing algorithms are often 

used to remove atmospheric blurring from a sequence of short-exposure images of an astronomical object.  The object is 

assumed to remain the same for all the short-exposure images, but the atmospheric point-spread functions (PSFs) are 

different for each short exposure image.  The term “short exposure” means that integration times for the images are 

comparable to or shorter than the coherence time of the atmosphere.  Multi-frame blind deconvolution (MFBD)
2,3

 and 

speckle imaging (SI)
1
 algorithms are arguably the most common types of algorithms used for this purpose.  MFBD and 

SI algorithms take distinctly different approaches to removing atmospheric turbulence, however.  SI algorithms estimate 

image quantities that, when averaged over the sequence of short-exposure images, retain high spatial frequency 

information about the object.  The most commonly estimated quantities are the images’ average energy spectrum, cross-

spectrum, and bispectrum.  A sequence of short exposure images of an unresolved star is needed in addition to the 

sequence of short exposure images of the object in order to estimate and remove the atmospheric contributions to these 

quantities.  MFBD algorithms, on the other hand, treat the individual PSFs of the short exposure images of the object as 

deterministic (but unknown) functions to be estimated jointly with the underlying object, and do not require separate star 

measurements.  Thus, MFBD algorithms estimate first-order quantities (PSF quantities and object intensities) while SI 

algorithms estimate second-order (energy spectrum and cross spectrum) and third-order (bispectrum) quantities.  In 

addition, SI algorithms include more data (the unresolved star images) than do MFBD algorithms. 

Because MFBD and SI algorithms are both used to deblur images, it is of interest to compare how well they accomplish 

this task.  Such comparisons have been carried out many times in the past by visually assessing image reconstructions 

produced by these algorithms and qualitatively rating their quality.  This approach can be misleading, however, since it 

is possible to have one algorithm produce a deblurred image that is of lesser visual quality than a deblurred image 

produced from the same data by another algorithm even if the signal-to-noise (SNR) properties of the second deblurred 

image are comparable to the first.  For example, regularization filters significantly impact the visual quality of an image 

and yet do not modify the Fourier-domain SNR properties at all.  Therefore, it is of value to carry out a comparison of 

the quality of deblurred images produced by these two algorithms using a quantitative approach.  To date (to the author’s 

knowledge), this type of analysis has not been carried out.  The probable reason for this lack of analysis is that there do 

not exist closed-form expressions for MFBD-based estimators, and thus no analytical expressions for the variances of 

these estimates, as do exist for SI. 



 

 
 

 

In this paper, the quality of deblurred images produced by SI and MFBD algorithms is compared using the SNRs of 

unbiased estimates of energy spectra as a metric.  There are at least two reasons to use this metric.  First, it is possible to 

obtain unbiased estimates of energy spectra inside the bandpass of the optical system.  Because telescopes are spatial 

low-pass filters, it is difficult to obtain unbiased estimates of image-domain quantities.  Unbiased estimates simplify and 

generalize the comparison results because the effect of biases on mean-square error do not need to be taken into account.  

Second, the energy-spectrum SNR properties of a deblurred image can be mapped directly to the resolution in the 

deblurred image. 

To carry out this comparison, analytical expressions for the SNRs of SI and MFBD energy spectra estimates are 

necessary.  A closed-form expression for SI energy spectrum SNRs (hereafter referred to as SI SNRs), used in this paper, 

has been available for several decades and has been used extensively to predict the performance of SI-based imaging 

systems and to compare measurement-data results to theory.
1
  For MFBD-based imaging systems, however, such an 

expression is not available because an analytical variance expression cannot, in general, be derived.  For this reason, 

lower bounds to the variances of unbiased estimates of energy spectra are used for the results in this paper in place of an 

analytical variance expression.  More specifically, Cramér-Rao lower bounds (CRBs)
4
 are used in this paper because 

they can often be achieved or approached closely.  The use of CRBs provides an analytical, but not closed-form, SNR 

expression for MFBD energy spectrum estimation.  For the CRB calculations, it is assumed that object support 

constraints are included in the estimation process.  When the MFBD estimator is modeled as estimating the PSFs pixel 

by pixel in the image domain, PSF support constraints are also included in the CRB calculations. 

A number of important properties of MFBD energy spectrum SNRs (referred to hereafter as MFBD SNRs) were 

uncovered as a result of this comparison study.  One property is that MFBD SNRs are usually larger, and often much 

larger, than the associated SI SNRs. This property is a result of the fact that the SI SNRs are proportional to the object 

energy spectrum and the ensemble-averaged atmosphere energy spectrum (the speckle transfer function), while MFBD 

SNRs are approximately proportional to the square root of these quantities.  A second property is that all SI SNRs are 

bounded above by the square root of the number of measurement frames used in the estimation process (for all spatial 

frequencies greater than approximately those present in long-exposure images) regardless of the number of detected 

photons, while MFBD SNRs are not bounded above.  A third property is that MFBD SNRs are decreasing functions of 

the PSF and object support constraint areas, and the rates of decrease get smaller as the support constraint areas get 

larger. 

The paper is divided into sections as follows:  the imaging model is contained in Section 2, the SI and MFBD SNR 

expressions are given in Section 3, representative SNR plots and properties are presented and discussed in Section 4, 

while Section 5 contains conclusions. 

2. IMAGING MODEL 
The linear space-invariant imaging equation used for the results in this paper is given by 

                                                              xxxx mmm nhoi ;  m=1,…,M, (1) 

where im(x) is the m
th

 short-exposure image, o(x) is the true object, hm(x) is the m
th

 PSF, nm(x) is the m
th

 noise 

realization, M is the number of images used to reconstruct a single object estimate, x is a two-dimensional spatial 

location vector, bold-face type indicates vector and matrix quantities, and * denotes convolution.  The noise term 

incorporates both Gaussian and Poisson noises. 

In preparation for the CRB theory presented in Section 3, it is necessary to rewrite the imaging model of Eq.(1) in a 

discrete vector form.  To this end, let  be a column vector that contains the spatial locations of the intensity values of 

im(x).  Then let ym, , and m be column vectors that contain the values of im( ), o( ), and nm( ), respectively, on the 

grid defined by .  In addition, let Hm be the block-circulant system matrix associated with hm( ).
5
  This permits 

rewriting Eq.(1) as a matrix-vector equation given by 

                                                                        mmm ηθHy ;  m=1,…,M. (2) 

Now let all M measurements be concatenated into a single measurement vector y, where 
TT

M

T

1 ,...,yyy .  Then the 

concatenated measurement equation can be written as 



 

 
 

 

                                                                                     ηHθy , (3) 

where H  = [(H1 )
T
,…, (HM )

T
]

T
, 

TT

M

T

1 ,...,ηηη , and the PDF of  is denoted by f ( ).  Because both photon and 

camera read noises are statistically independent across pixels and across measurement frames, f ( ) is equal to the 

multiplication of all the single-pixel PDFs. 

3. SI AND MFBD SNR EXPRESSIONS 
3.1 SI SNR expression 

The image SI SNR expression at a spatial frequency f, SNRSI(f), is given by
1
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where K is the mean number of photons per short-exposure image, |On(f)| is the Fourier amplitude spectrum of o(x) 

normalized to one at zero spatial frequency, E[|H(f)|2] is the speckle transfer function that is one at zero spatial 

frequency,
1
 N

2
 is the number of pixels in each short-exposure image, and 

2
 is the single-pixel variance of the camera 

Gaussian read noise.  This expression for SNRSI(f) is valid for spatial frequencies greater than ro/ , where ro is the 

coherence length of the atmosphere and  is the imaging wavelength. 

Equation (4) is the SNR expression for the estimated image energy spectrum, not for the estimated object energy 

spectrum.  If a high-SNR and unbiased estimate of E[|H(f)|2] is available, SNRSI(f) is also the SNR expression for the 

estimated object energy spectrum if the object energy spectrum is estimated by dividing the image energy spectrum 

estimate by E[|H(f)|2].  In practice, this is typically how an estimate of |O(f)|2 is obtained, where E[|H(f)|2] is calculated 

using separate measurements of an unresolved star.  Although this assumption is a good one in practice, there is still 

noise associated with estimating E[|H(f)|2].  For this reason, the SNR expression in Eq.(4) provides upper bounds to the 

achievable SNRs for E[|O(f)|2]. 

3.2 MFBD SNR expression 

The MFBD SNR expression at a spatial frequency f, SNRMFBD(f), is given by 

                                                                
2/1
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where CRBES(f) is the MFBD-based object energy spectrum CRB at the spatial frequency f.  The numerator in Eq.(5) is 

the result of assuming an unbiased estimate of |On(f)|2.  There is no closed-form expression for CRBES(f);  however, the 

process used to calculate CRBES(f) is outlined below. 

Consider first the general problem of calculating the CRBs associated with estimating a vector of parameters  based on 

a measurement vector y that has a probability density function f(y; ) that is a function of the unknown parameter vector 

.  These CRBs are the diagonal elements of the inverse of the Fisher Information Matrix (FIM), F,  whose value in the 

p
th

 row and q
th

 column, Fpq, is given by 
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;fln;fln
E

Φ

Φy

Φ

Φy
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where ln() is the natural logarithm of the quantity in parentheses, and p is the p

th
 element of .  Often it is of interest to 

generate CRBs for a function g( ) of the parameters in terms of the FIM associated with  because it makes the 

calculations easier.  In this case, the CRBs associated with g( ) are the diagonal elements of the matrix GF-1GT
, where 

G is the Jacobian of g. 



 

 
 

 

Based on the theory in the preceding paragraph, the object energy spectrum CRBs are calculated in four steps.  The first 

step is calculating the FIM associated with jointly estimating all object image-domain intensity values and all M sets of 

PSF parameter values inside their respective support constraint regions.  The second step is inverting this FIM.  The third 

step is calculating the matrix GF-1GT
, where G is the Jacobian associated with the function g that transforms the object 

intensity values into object energy spectrum values.  The fourth and final step is to extract the diagonal elements of 

GF-1GT
 that are the object energy spectrum CRBs.  The FIM contains terms associated with estimating both of the object 

and PSF parameter values because MFBD algorithms jointly estimate both object and PSF parameters.  The object 

parameters are its image-domain intensities, while there are two types of PSF parameterizations that are used for the 

results in this paper.  The first is in terms of the image-domain PSF intensity values (pixel-based PSF parameterization), 

while the second is in terms of the coefficients of a Zernike expansion of the pupil E-field phase that are associated with 

the PSF (Zernike-based PSF parameterization).  The vector  in Eq.(6) contains all of the object parameters and all M 

sets of PSF parameters. 

The general form of F for MFBD-based estimation is given by 
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F11 is the block of F associated with the object  parameters, Fp1 and F1p for p>1 are the blocks of F that contain the cross-

terms of object parameters and the (p-1)
th

 PSF parameters, and Fpp for p>1 is the block of F associated with the (p-1)
th
 

PSF parameters. 

4. RESULTS 
Results from evaluating and comparing the SI SNRs and MFBD SNRs using Eqs.(4) and (5) are presented in this 

section.  Subsections 4.1 – 4.5 contain descriptions of the SI SNR and MFBD SNR dependencies on |On(f)|
2
E[H(f)|

2
], 

D/ro (where D is the telescope diameter), K, object support constraint area, and PSF support constraint area, respectively.  

The SNR calculations were carried out for the two objects shown in Fig. 1; for D/ro = 8, 16, and 32; for K = 10
2
, 10

4
, and 

10
8
; and for various object support constraint areas.  The atmospheric PSFs for the results in this section were created 

with the use of Kolmogorov-based random phase screens generated using a 100-term Zernike expansion of the pupil 

phase.  For the MFBD SNR calculations, the PSFs were parameterized in two different ways:  a 100-term Zernike 

expansion of the pupil phase, and in terms of the image-domain intensity values.  For Zernike-based PSF 

parameterization, no PSF support constraint was used.  For pixel-based PSF parameterization, various PSF circular 

support constraints were used.  All the results in Subsections 4.1 – 4.5 assume that the photon noise dominates the read 

noise (i.e., the SNRs are independent of the value of the read noise) and that M=10.  The impacts of read noise 

dominating photon noise and of the value of M on the SNRs are discussed in Subsection 4.6. 

4.1 SNR dependence on |On(f)|2E[H(f)|2]  

In this subsection it is shown that the functional dependence of the MFBD SNRs on spatial frequency is approximately 

proportional to the square root of |On(f)|
2
E[H(f)|

2
] for all but the highest and lowest spatial frequency magnitudes.  For 

ease of understanding, the SNRs are plotted as a function of spatial frequency magnitude normalized to one at D/ .  All 

plots are for the OCNR object, an object support constraint region that was generated by blurring the true object support 

with a 2 by 2 kernel (blur2 support), and for K = 10
4
.  A circular PSF support constraint region that contained 99.9% of 

the PSF energy was used for the pixel-based PSF parameterization.  For each of the MFBD SNR plots, there is a 

corresponding plot of the square root of |On(f)|
2
E[H(f)|

2
] that is scaled in amplitude to a best fit visually to the MFBD 

SNR plot. 

 



 

 
 

 

                         

 (a)                                                                          (b) 

 

Fig. 1. Objects used for SNR calculations:  (a) OCNR, (b) disc. 

 

Figure 2 contains arbitrarily-scaled MFBD SNR plots for D/ro = 8 and 32.  The purpose of these plots is to illustrate the 

spatial-frequency dependence of the SNRs;  thus, the plots are scaled to clarify this dependence.  Only the relative y-axis 

values for each pair of plots are meaningful.  For each of these D/ro values, there are plots for both Zernike-based and 

pixel-based PSF parameterization.  The proportionality of the SNRs to the square root of |On(f)|
2
E[H(f)|

2
] is quite good 

except for the highest and lowest spatial frequencies for both D/ro ratios and for both PSF parameterizations.  Similar 

results are obtained when varying other parameters such as the object, object support constraint area, PSF support 

constraint area (for pixel-based PSF parameterization), and photon levels.  In contrast, it can be seen from Eq.(4) that the 

SI SNRs are proportional to |On(f)|
2
E[H(f)|

2
], not its square root, at low light levels (i.e., when the denominator is 

dominated by the K
2
 term).  In the high-light level limit, (i.e., when the denominator of Eq.(4) is dominated by the 

K
4
|On(f)|

4
E[H(f)|

2
]

2
 term), the SI SNRs are independent of |On(f)|

2
E[H(f)|

2
]. 

 

Fig. 2. Log10 plots of MFBD SNRs (solid lines) and the square root of |On(f)|
2E[H(f)|2] (dotted lines) in arbitrary units versus 

normalized spatial frequency magnitude.  Parameter values are K = 104, OCNR object, and blur2 object support 

constraint for all plots.  In addition, a 99.9% circular PSF support constraint was used for pixel-based PSF 

parameterization. From top to bottom, the parameters for each pair of lines are: D/ro = 8, Zernike-parameterized PSF;  

D/ro = 8, pixel-parameterized PSF;  D/ro = 32, Zernike-parameterized PSF; D/ro = 32, pixel-parameterized PSF.  The 

line pairs are shifted vertically for clarity. 



 

 
 

 

Plots of absolute (not relative) SI SNRs and the MFBD SNRs for both pixel-based and Zernike-based PSF 

parameterization are shown in Fig. 3.  The parameters for these plots are D/ro = 8, K = 10
4
, the OCNR object, blur2 

object support constraint, and the 99.9% circular PSF support constraint for pixel-based PSF parameterization.  Notice 

that the MFBD SNRs for Zernike-based PSF parameterization are the highest, followed by the MFBD SNRs for pixel-

based PSF parameterization, followed by the SI SNRs.  It was expected that the MFBD SNRs would be higher for 

Zernike-based PSF parameterization than for pixel-based PSF parameterization because there are fewer Zernike 

coefficients to be estimated than PSF pixel values;  however, it was surprising to see that the SI SNRs fared as poorly as 

they did against the MFBD SNRs.  Although the MFBD SNRs are higher than the SI SNRs for all spatial frequencies in 

Fig. 3, for larger object support sizes, the MFBD SNRs for pixel-based PSF parameterization drop below the SI SNRs 

for normalized spatial frequencies around 0.25. 

 

Fig. 3. Log10 plots of SI and MFBD SNRs as a function of normalized spatial frequency magnitude:  MFBD SNRs for 

Zernike-based PSF parameterization (solid line), MFBD SNRs for pixel-based PSF parameterization (dotted line), and 

SI SNRs (dashed line).  Parameter values are D/ro = 8, K = 104, OCNR object, blur2 object support constraint, and the 

99.9% PSF circular support constraint for the pixel-based PSF parameterization. 

 

4.2 SNR dependence on D/ro 

The exploration of the dependence of the MFBD SNRs on D/ro was guided by two observations.  The first is the result 

from Subsection 4.1 that the MFBD SNRs as a function of spatial frequency are approximately proportional to the 

square root of |On(f)|
2
E[H(f)|

2
] for all light levels.  The second is that the SI SNRs are proportional to D/ro only through 

E[H(f)|
2
] in the low light level limit and are independent of D/ro in the high light level limit.  Based on these two 

observations, it was expected that the MFBD SNRs would depend on D/ro only through the square root of E[H(f)|
2
] for 

all light levels.  This intuition was explored for all photon levels, for both objects, and for all three values of D/ro:  8, 16, 

and 32.  For each D/ro value, MFBD SNRs were calculated for both pixel-based and Zernike-based PSF 

parameterizations.  Each MFBD SNR result was then normalized by dividing it by the square root of the |On(f)|
2
E[H(f)|

2
] 

term used in its calculation.  If the MFBD SNRs depend only on D/ro through the square root of E[H(f)|
2
], the resulting 

plots should be the same for all D/ro values;  however, it was discovered that these normalized MFBD SNRs still 

depended on D/ro.  The plots in Figs. 4 and 5 illustrate this dependency.  For these plots, K=10
4
, and the OCNR object 

and the blur2 object support constraint were used.  The plots in Fig. 4 are for MFBD SNRs with Zernike-parameterized 

PSFs, and the plots in Fig. 5 are for pixel-parameterized PSFs using the 99.9% PSF circular support constraint.  Both the 

pixel-parameterized and Zernike-parameterized plots are approximately constant through the mid-spatial-frequency 

region (over which the square root of E[H(f)|
2
] various considerably), as they should be since the SNRs have already 

been shown to be qualitatively proportional to the square root of the |On(f)|
2
E[H(f)|

2
].  The interesting point to be made 



 

 
 

 

from Figs. 4 and 5 is that the quantitative proportionality constant depends upon D/ro;  in fact, the proportionality 

constant is an increasing function of D/ro.  This indicates a decrease in the sensitivity of the MFBD SNRs to atmospheric 

turbulence as compared to SI SNRs, in addition to the already-shown dependence on the square root of E[H(f)|
2
].  The 

proportionality constant has a stronger dependence on D/ro for Zernike-based PSF parameterization than for pixel-based 

PSF parameterization.  At this time, an expression for the mid-spatial-frequency dependence of the MFBD SNRs on D/ro 

for either parameterization has not been derived.  More research is planned to further understand this dependence. 

 

 

Fig. 4. Plots of Zernike-parameterized-PSF MFBD SNRs, each normalized by dividing it by the square root of the 

|On(f)|
2E[H(f)|2] term used in its calculation, as a function of normalized spatial frequency magnitude:  D/ro = 8 (solid 

line), D/ro = 16 (dotted line), D/ro = 32 (dashed line).  Parameter values are K = 104, OCNR object, and blur2 object 

support constraint. 

 

Fig. 5. Plots of pixel-parameterized-PSF MFBD SNRs, each normalized by dividing it by the square root of the 

|On(f)|
2E[H(f)|2] term used in its calculation, as a function of normalized spatial frequency magnitude:  D/ro = 8 (solid 

line), D/ro = 16 (dotted line), D/ro = 32 (dashed line).  Parameter values are K = 104, OCNR object, blur2 object support 

constraint, and the 99.9% PSF circular support constraint. 



 

 
 

 

 

4.3 SNR dependence on K 

The dependence of the SI SNRs and the MFBD SNRs on K was explored for a variety of parameter combinations.  From 

Eq.(4), it can be seen that the SI SNRs are proportional to K at low light levels and are independent of K at high light 

levels.  The MFBD SNRs were discovered to be proportional to the square root of K for all light levels.  Plots of SI 

SNRs, MFBD SNRs for Zernike-based PSF parameterization, and MFBD SNRs for pixel-based PSF parameterization 

are displayed in Figs. 6 and 7 for K=10
2
 and K=10

8
, respectively.  For these results, D/ro=8, the OCNR object, and the 

blur2 object support constraint were used.  For the pixel-based PSF parameterization results, the 99.9% PSF circular 

support constraint was used.  The low-light-level results displayed in Fig. 6 show that the SI and MFBD SNRs are 

comparable near zero spatial frequency, but then the |On(f)|
2
E[H(f)|

2
] dependence of the SI SNRs causes them to 

decrease much more rapidly than the MFBD SNRs as spatial frequency magnitude increases.  The high-light-level 

results displayed in Fig. 7 show the opposite trend; that is, the SI and MFBD SNRs differ most at the low spatial 

frequencies due to the upper limit of M
1/2

 to the SI SNRs, but the differences decrease as spatial frequency magnitude 

increases due to the dependence of MFBD SNRs on the square root of |On(f)|
2
E[H(f)|

2
].  It can be seen for both cases, 

though, that the MFBD SNRs are always higher. 

4.4 SNR dependence on object support constraint area 

There is no dependence of the SI SNRs on object support constraint area, as can be seen in Eq.(4), because the standard 

way to reconstruct an image using SI techniques has no provision for including an object support constraint.  On the 

other hand, including an object support constraint in MFBD algorithms is a common practice.  For this reason, the 

impact of the size of the object support constraint area on the MFBD SNRs was explored and is now discussed. 

It was discovered that the MFBD SNRs remain qualitatively proportional to the square root of |On(f)|
2
E[H(f)|

2
] regardless 

of the size of the object support constraint area; however, the SNR at each spatial frequency is a decreasing function of 

the object support constraint area.  To illustrate this latter point, the dependence of the MFBD SNRs on object support 

constraint area is shown in Fig. 8 for Zernike-based and pixel-based PSF parameterizations.  The quantities plotted are 

the sums of the MFBD SNRs inside the telescope bandpass normalized by dividing each sum by the sum of the MFBD 

SNRs for the smallest object support constraint area.  For these plots, K=10
4
, D/ro=8, and the OCNR object was used.  

For pixel-based PSF parameterization, the 99.9% PSF circular support constraint was used.  The object support 

constraints used for the results were generated by blurring the true object support by square kernels that were 2, 4, 6, 8, 

10, 14, and 18 pixels on a side.  It can be seen from the two plots in Fig. 8 that the MFBD SNRs are a decreasing 

function of object support constraint area.  It is interesting to note that the rate of decrease in the SNRs becomes less as 

the object support constraint area becomes larger.  This implies that the biggest benefit from increasing the accuracy of 

an object support constraint comes when the accuracy is already quite good. 

4.5 SNR dependence on PSF support constraint area for pixel-based PSF parameterization 

There is no provision in standard SI algorithms to include a PSF support constraint because PSF information is included 

only in the modulus squared of the atmosphere/telescope transfer function.  For MFBD algorithms that use pixel-based 

PSF parameterization, it is common to include a PSF support constraint.  For this reason, the dependence of MFBD 

SNRs for pixel-based PSF parameterization on the PSF support constraint area was explored and is now discussed.   

The quantities plotted in Fig. 9 are the sums of the MFBD SNRs inside the telescope bandpass normalized by dividing 

each sum by the sum of the MFBD SNRs for the smallest PSF support constraint area.  For these plots, K=10
4
, D/ro=8, 

the OCNR object, and the blur2 object support constraint were used.  The PSF support constraints were circles of 

increasing radius.  The minimum radius resulted in 99% of the PSF energy being enclosed, while the maximum radius 

resulted in 99.99% of the PSF energy being enclosed.  It can be seen from the plot in Fig. 9 that the same behavior of the 

MFBD SNRs is seen for increasing PSF support constraint area as was seen for increasing object support constraint area. 



 

 
 

 

 
 

Fig. 6. Log10 plots of low-light-level energy spectrum SNRs as a function of normalized spatial frequency magnitude:  

MFBD SNRs for Zernike-based PSF parameterization (solid line), MFBD SNRs for pixel-based PSF parameterization 

(dotted line), and SI SNRs (dashed line).  Parameter values are D/ro = 8, K = 102, OCNR object, blur2 object support 

constraint, and the 99.9% PSF circular support constraint for the pixel-based PSF parameterization. 

 

 

 
Fig. 7. Log10 plots of high-light-level energy spectrum SNRs as a function of normalized spatial frequency magnitude:  

MFBD SNRs for Zernike-based PSF parameterization (solid line), MFBD SNRs for pixel-based PSF parameterization 

(dotted line), and SI SNRs (dashed line).  Parameter values are D/ro = 8, K = 108, OCNR object, blur2 object support 

constraint, and the 99.9% PSF circular support constraint for the pixel-based PSF parameterization. 



 

 
 

 

 
 

Fig. 8. Sums of MFBD SNRs inside the telescope bandpass, normalized by dividing each sum by the MFBD SNR sum for 

the smallest object support constraint area, as a function of object support constraint area:  pixel-based PSF 

parameterization (solid line), and Zernike-based PSF parameterization (dashed line).  Parameter values are D/ro = 8,    

K = 104, OCNR object, and the 99.9% PSF circular support constraint for the pixel-based PSF parameterization. 

 

 
 

Fig. 9. Sums of MFBD SNRs inside the telescope bandpass, normalized by dividing each sum by the MFBD SNR sum for 

the smallest PSF support constraint area, as a function of PSF support constraint area.  Parameter values are D/ro = 8,  

K = 104, OCNR object, and blur2 object support constraint. 

 

4.6 SNR dependence on read noise variance and M 

To investigate the SNR dependence on read noise variance, consider the case where read noise dominates photon noise.  

For the SI SNRs, this occurs when the variance term N
4 4

 is much larger than the other terms in the denominator of 



 

 
 

 

Eq.(4).  It can be seen in this case that the SI SNRs are proportional to N
-2 -2

, K
2
, and |On(f)|

2
E[H(f)|

2
].  Recall that there 

are two limiting cases when read noise is negligible:  the high-light-level case (K
4
|On(f)|

4
E[H(f)|

2
]

2
 much greater than the 

other denominator terms), and the low-light-level case (K
2
 much greater than the other denominator terms).  The low-

light-level SI SNRs are proportional to K and |On(f)|
2
E[H(f)|

2
], while the high-light-level SI SNRs are independent of 

these values.  Thus the impact of read noise dominating photon noise on the SI SNRs as compared to the converse case 

is to cause them to be proportional to N
-2 -2

 and |On(f)|
2
E[H(f)|

2
] regardless of the photon level, and increase the photon 

dependence from either none or K to K
2
. 

For the MFBD SNRs, the impact of read noise dominating photon noise as compared to converse case follows a pattern 

similar to the low-light-level SI SNRs.  The photon dependence increases from K
1/2

 to K, and the read noise dependence 

goes from none to N
-1 -1

.  There is no change in the dependence of the MFBD SNRs on the square root of 

|On(f)|
2
E[H(f)|

2
], D/ro, object support constraint area, and PSF support constraint area. 

Next, the dependence of the SNRs on M is discussed.  It is easy to see from Eq.(4) that the SI SNRs are proportional to 

M
1/2

 regardless of the photon level.  For M  10, the MFBD SNRs are also proportional to M
1/2

.  For smaller values of 

M, the MFBD SNRs depend on the structure of the individual atmospheric PSFs.
6
  This PSF-structure dependence 

occurs because of the few number of frames used in the estimation process.  A similar dependence would be seen in SI 

SNRs if only a few frames are used;  however, the SI SNR expression assumes that the individual structure of the PSFs 

has been averaged out so that the underlying statistical properties of the PSFs determine the SNRs. 

5. CONCLUSIONS 
A comparison of MFBD and SI SNRs associated with estimating an object’s energy spectrum from a sequence of short-

exposure atmospherically-blurred images of the object was given in this paper.  The SI SNRs were calculated using the 

standard closed-form image energy spectrum expression, which implies that a perfect estimate of the speckle transfer 

function is available;  thus, the SI SNRs are upper bounds to the achievable SI SNRs for real data.  The MFBD SNRs 

were calculated using CRBs in place of variances due to the lack of an analytical expression for the variances;  thus, the 

MFBD SNRs are upper bounds to the achievable MFBD SNRs. 

It was shown that the MFBD SNRs are almost always greater than the associated SI SNRs at all spatial frequencies, and 

that they are both proportional to M
1/2

 when M  10.  Other conclusions depend on the relative magnitudes of the photon 

noise and read noise variances.  When photon noise dominates read noise, it was shown that the low-light-level SI SNRs 

are proportional to K and |On(f)|
2
E[H(f)|

2
], while the MFBD SNRs are proportional to the square root of these quantities.  

The high-light-level SI SNRs are independent of K and |On(f)|
2
E[H(f)|

2
], while the high-light-level MFBD SNRs are still 

proportional to the square root of K and |On(f)|
2
E[H(f)|

2
].  When read noise dominates photon noise, the SI SNRs are 

proportional to K
2
, |On(f)|

4
E[H(f)|

2
]

2
, and N

-2 -2
 for all light levels, while the MFBD SNRs are proportional to the square 

root of these quantities. 

Unlike SI SNRs, MFBD SNRs depend on D/ro through more than the E[H(f)|
2
] term.  Although the spatial frequency 

dependence of the MFBD SNRs is qualitatively equal to E[H(f)|
2
]

1/2
 as D/ro increases, the decrease in the MFBD SNRs is 

less than the decrease in E[H(f)|
2
]

1/2
.  In addition, MFBD SNRs are decreasing functions of the size of the object and PSF 

support constraint areas, while the SI SNRs are independent of these sizes since the SI SNR expression does not include 

the effects of using support constraints. 
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